

The use of isotopes to define the role of legumes in contributing to food security & in adaptation & mitigation of climate change

Mark Peoples & Ian Fillery CSIRO Australia

PLANT INDUSTRY www.csiro.au

Why legumes?

Food security & adaptation to future climates

- Leguminosae 20,000 species (cf 10,000 Gramineae & 3,500 Brassicaceae)
- Many hundreds of species used for human &/or animal food globally
- Only 20 species grown commercially over large areas (~300Mha in total)
- Underexploited legumes an untapped pool of genetic diversity for adaptation
 Climate change & variability

Combat incursions of new diseases & pests

Provide options to grow more food in hostile or deficient soil environments

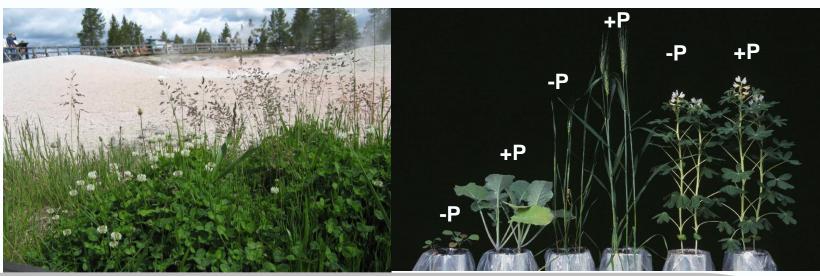


Photo: courtesy of Janet Sprent, Dundee, UK Photo: courtesy of the late Peter Hocking, CSIRO Source: Herridge *et al* (2008) *Pl. & Soil* **311**:1-18; Peoples *et al* (2009) *Symbiosis* **48**:1-17

Why legumes?

Food security & adaptation to future climates

- Leguminosae 20,000 species (cf 10,000 Gramineae & 3,500 Brassicaceae)
- Many hundreds of species used for human &/or animal food globally
- Only 20 species grown commercially over large areas
- Underexploited legumes an untapped pool of genetic diversity for adaptation
- N content of foliage & seed protein not as affected by e[CO₂] as non-legumes

Why legumes?

Food security & adaptation to future climates

- Leguminosae 20,000 species (cf 10,000 Gramineae & 3,500 Brassicaceae)
- Many hundreds of species used for human &/or animal food globally
- Only 20 species grown commercially over large areas
- Underexploited legumes an untapped pool of genetic diversity for adaptation
- N content of foliage & seed protein not as affected by e[CO₂] as non-legumes

Mitigating climate change

- Lower fossil energy use than N-fertilized systems
- Believed to have lower green-house gas emissions than N-fertilized systems
- Contribute to C sequestration in soil
- Opportunities to replace petroleum products as a source of feedstock for biofuels & biorefineries

Source: Herridge *et al* (2008) *Pl. & Soil* **311**:1-18; Peoples *et al* (2009) *Symbiosis* **48**:1-17, Rogers *et al* (2009) *Pl. Physiol.* **151**:1009-1016; Jensen *et al* (2012) *Agron. Sustain. Dev.* **32**: 329-364

Stable isotopes of Nitrogen

Element	lsotope	% Atmospheric	Range	Variable
		abundance	in plants	
Nitrogen	¹⁴ N	99.6337		
	¹⁵ N	0.3663	-2 to +26‰	* Plant species

* $\delta^{15}N$ (‰) = 1000 x (sample abundance – 0.3663) / (0.3663)

Quantification of N_2 fixation requires a measurable difference in ¹⁵N content between atmospheric N_2 & available soil N

% legume N fixed = 100 x (15 N non-legume – 15 N legume) / (15 N non-legume)

Where ¹⁵N non-legume is assumed = ¹⁵N plant-available soil N used by legume

Application of ¹⁵N to quantify N₂ fixation

Adaptation to future climates – Impact of elevated [CO₂]

Further studies required

Genetic variation in response to e[CO₂]

<+10% to >+40% by 5 different field pea varieties *cf* ambient over 2 years

Effects of soil type

+20% to +86% for chickpea

+44% to +51% for field pea

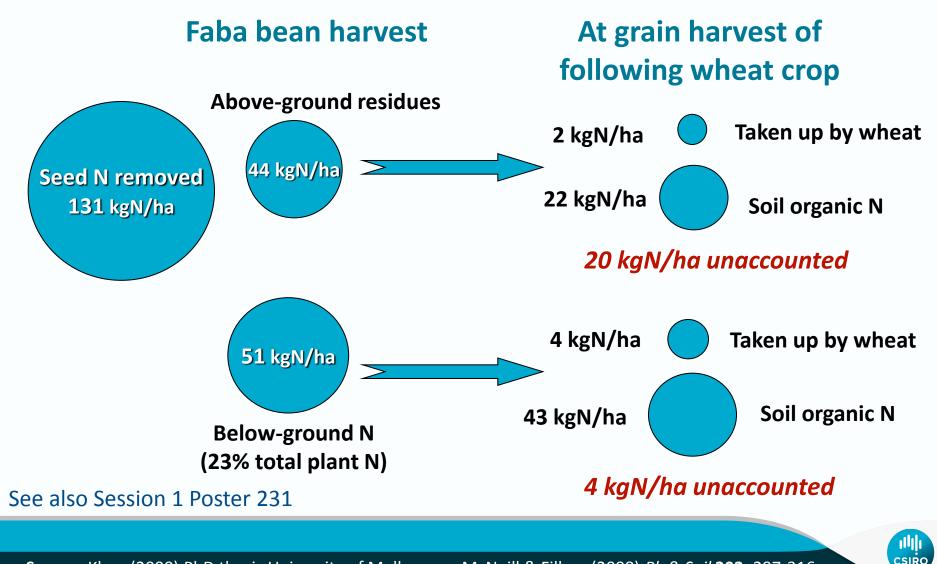
+114% to +250% for annual medic

Effects of pasture composition

+29% for subclover

See also Session 1 Poster 187

Stimulation negated by :


- Low supply of available P
- Elevated temperatures
- What other factors?

Source: Lilley et al (2001) New Phytol. 150: 385-395;

Lam et al (2012) Crop & Pasture Sci. 63: 53-62; Fitzgerald et al (2012) Proc. Aust. Agron. Conf.

Application of ¹⁵N to quantify the partitioning & fate of legume N

Source: Khan (2000) PhD thesis University of Melbourne; McNeill & Fillery (2008) Pl. & Soil 302: 297-316

Application of ¹⁵N to quantify the partitioning & fate of legume N

Adaptation to future climates – Impact of elevated CO₂

Further studies required

Below-ground partitioning of legume N

e[CO₂] often increases nodulation (but not always). Effects of N rhizodeposition?

Subsequent availability of legume N

Gross N mineralization rates unaffected by $e[CO_2]$, but N immobilization can be 30% higher.

In controlled conditions wheat obtained 11% of its N supply from previous field pea under $e[CO_2]$ *cf* 20% under ambient conditions.

Are these few results representative of other legume systems?

See also Session 4 paper 61

Source: van Groenigen *et al* (2006) *Ecol. Studies* **187**: 373-391; Rogers *et al* (2009) *Pl. Physiol.* **151**: 1009-1016; Armstrong *et al* (unpubl)

Total N₂O emissions per growing season or year

Category No	umber of site-years of data	Measured emissions (kg N ₂ O-N/ha)		
	(171 in total)	Range	Mean	
Legume-based pasture	25	0.10-4.57	1.38	
N-fertilized grass pastur	e 19	0.30-18.16	4.49	
Crop legumes	46	0.03-7.09	1.02	
N-fertilized crops	48	0.09-12.67	2.71	
Soil: no legume or adde	d N 33	0.03-4.80	1.20	

CSIR

See also Session 4 Paper 67 & Poster 66

Source: Jensen et al (2012) Agron. Sustain. Dev. 32: 329-364

Application of ¹⁵N to quantify losses of legume N

Mitigation of climate change - green-house gas emissions

Further studies required

- Identify the sources of N₂0 emissions during legume growth
- Quantify the subsequent losses of N from legume residues
 N₂O cf losses of other forms of N?

• Determine the likely impact of future climates

Effect of increased microbial immobilization of N under e[CO₂]? Effect of higher temperatures &/or more variable rainfall?

Conclusions – Use of ¹⁵N to gain new knowledge

Corporation

Adaptation to future climates – Impact of elevated CO₂

• N₂ fixation & below-ground partitioning of N

Quantify affects of e[CO₂]

Explore genetic variability in response

Determine how response is modified by GxExM interactions

Subsequent availability legume N

Quantify importance of legume below-ground N for following crops

Define how soil N-dynamics in legume-based systems are affected by e[CO₂]

Conclusions – Use of ¹⁵N to gain new knowledge

Corporation

Adaptation to future climates – Impact of elevated CO₂

• N₂ fixation & below-ground partitioning of N

Quantify affects of e[CO₂]

Explore genetic variability in response

Determine how response is modified by GxExM interactions

Subsequent availability legume N

Quantify importance of legume below-ground N for following crops

Define how soil N-dynamics in legume-based systems are affected by e[CO₂]

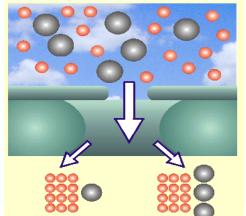
Mitigation of climate change – Green-house gas emissions

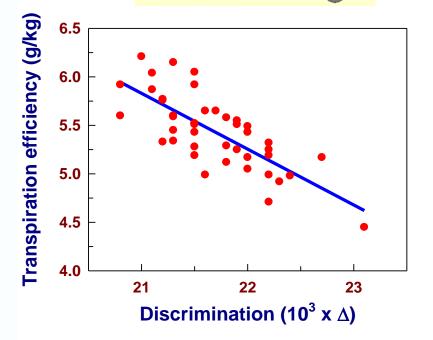
N₂O losses from legume-based systems

Confirm origin of N₂O release

Consider how N₂O emissions might be influenced by future climates

Isotopes of Carbon


Element	lsotope	% Atmospheric	Range	Variable
		abundance	in plants	
Carbon	¹² C	98.98		
	¹³ C	1.11	-20 to -34‰	C ₃ photosynthesis
			-9 to -17‰	C ₄ photosynthesis
	¹⁴ C			



Application of C isotopes for adaptation to future climates – More efficient use of variable rainfall

Use of ¹³C to identify improved water use efficiency

- C₃ plant species discriminate against ¹³CO₂ during photosynthesis
- Discrimination (Δ^{13} C) is LESS in species or varieties which have GREATER transpiration efficiency.
- Greater transpiration efficiency (lower ∆¹³C) may result from:
 (1) Lower stomatal conductance,
 (2) Greater photosynthetic capacity,
- (3) Some combination of these.

Source: Farquhar & Richards (1984) Aust. J. Pl. Physiol. 11: 539-552

Identifying genetic differences in plant water-use efficiency (WUE) ¹³C discrimination

Has already been used as a selection tool

WUE by semi-leafless field pea superior to conventional genotypes. Drought adaptation in peanut & cowpea.

Comparative measures of WUE

Between seasons & between species.

However, some legume studies have failed to find correlations with water use

Further studies required

Explain apparent inconsistencies

Intra- & inter-specific comparisons.

Define influence of environment, management & sampling protocols.

Source: Armstrong *et al* (1994) *Aust. J. Pl. Physiol.* **21**:517-532; Wright *et al* (1994) *Crop Sci.* **34**: 92-97; Hall *et al* (1994) *Field Crops Res.* 36: 125-131; Turner *et al* (2007) *J. Integ. Pl. Biol.* **49**: 1478-1483

Application of C isotopes for mitigation of climate change – Quantifying contributions to C sequestration in soils

Following the fate of legume organic C – Contributions to soil C

• Exploiting differences in ¹³C content of C₃ & C₄ species

Long-term lucerne (alfalfa)-maize rotations - >50% C in lucerne contributed to soil organic C *cf* <15% of C from maize residues

• ¹⁴C methodologies

Quantify the extent of losses of C from legume residues & flow of C through different soil organic matter pools

Further studies required

• Quantify the effect of different strategies on rate of change of soil C stock

Legumes or species combinations x management

Influence of environment

Source: Gregorich *et al* (2001) *Can. J. Soil Sci.* **18**:21-31; Bhupinderpal-Singh *et al* (2005) *Eur. J. Soil Sci.* **56**: 329-341

How will soil C sequestration be affected by future climates?

The fate of organic C in e[CO₂] environments

 Meta-analysis of soil C affects under e[CO₂]: note – this is not legume specific Total soil C increase by 4% on average, but dependent upon N supply nil difference from ambient @ inputs <30 kgN/ha per year +4% @ inputs 30-150 kgN/ha per year +8% @ inputs >150 kgN/ha per year
 Increase in soil C largely in labile C pools

Further studies required

- Determine how legumes influence soil C accretion under e[CO₂]
- Identify strategies to increase sequestration of organic C into more stable pools

Conclusions – Use of C isotopes to gain new knowledge

Adaptation to future climates – Efficient use of variable rainfall

• Can ¹³C discrimination be used to measure WUE by legumes?

- Explore genetic variability.
- Explain apparent inconsistencies between studies.
- Identify conditions & sampling protocols where ¹³C is most reliable.

Mitigation of climate change - Soil C sequestration

• Quantifying the fate of legume organic C

Determine how rate of change in soil C is modified by GxExM interactions. Define how soil C-dynamics are affected by $e[CO_2]$.

Evaluate whether it is possible to sequester more C into stable pools.

